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Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of
stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues
and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusiv-
ities will also contribute to the measurement of non-Gaussian behavior. Here we present symmetrized double PFG
(sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular mod-
ulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an
oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combi-
nation of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time
dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth
cumulant (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous
identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify
the underlying micro-structural changes corresponding to current kurtosis based diagnostics, and act as a novel
source of contrast to better resolve tissue micro-structure. Copyright © 2015 John Wiley & Sons, Ltd.
Additional supporting information may be found in the online version of this article at the publisher’s web site.
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INTRODUCTION

NMR has long been used as a non-invasive probe of material micro-
structure (1), with applications in medical MRI and oil well logging
(2–6) through the relationship between the apparent diffusion coef-
ficient and pore structure (2,7). In bulk fluid, the molecular diffusion
displacement R is distributed in a Gaussian fashion, log [P(R)]∝R2,
and thus the presence of higher order terms (e.g. fourth order term,
kurtosis) is a reflection of restricted diffusion. In medical MRI, the
experimental detection of the fourth moment has been used for
clinical indications in diffusion kurtosis imaging (DKI) and has been
linked to stroke (8) and other tissue pathologies (9,10), and its direct
measurement is desirable as a clinical diagnostic tool.

A complication arises in that sample heterogeneity can also
contribute to deviations from a Gaussian signal decay, even in
the complete absence of non-Gaussian diffusion. For example,
while diffusion in bulk fluids is Gaussian, a diffusion measure-
ment of a water and an oil vial next to each other (without
imaging) would still yield non-Gaussian behavior. This is simply
due to their differing diffusion coefficients and the superposition
of their signals.

In the case of imaging tissue, a single voxel can contain a va-
riety of distinct microscopic environments of differing size and
anisotropy. As with the vials of water and oil, these different en-
vironments can represent independent components. Thus, while
“free water” in tissue is well characterized by Gaussian diffusion
(11), variations in the tissue can lead to a distribution of observed
diffusivities that would still register as a fourth order decay in
DKI. If these contributions could instead be separated from the

contributions to kurtosis from restricted water, these different
environments could be unambiguously identified.
Isolation of hidden “local” features of restricted diffusion is still

possible. For example, oscillating the gradients such that the effective
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encoding (“q-vector”) is spun at themagic angle will average out the
influence of anisotropy, both macroscopic and compartmental (12).
Alternatively, correlating the direction of diffusion over successive
displacements with double pulsed field gradient techniques
(d-PFG) has been shown to be effective to extract “local” features
of diffusion (13–15). For instance, the signal difference between
parallel (0∘) and anti-parallel (180∘) gradients has been used to
unambiguously identify restricted diffusion (13). However, themulti-
ple diffusive displacements measured in these angular techniques
are interdependent, complicating their interpretation and design.
This work identifies mirror symmetries of diffusional motion

when measured over multiple displacements, and formulates
two corresponding independent measures (or modes) of station-
ary stochastic processes (16). These modes lack the intrinsic in-
terdependence found between measurements of two-point
displacements, greatly simplifying the design of d-PFG measure-
ments. Thus, their utilization enables a new class of techniques,
where these independent modes are experimentally controlled
to engineer sequences that isolate features of diffusion.
We introduce one particular implementation for MRI, the sym-

metrized double pulsed-field-gradient (sd-PFG) experiment. By
fixing the encoding strength for both diffusion modes while
varying their physical orientations, the technique can separate
Gaussian and non-Gaussian diffusion processes as modulations
of the NMR signal at different “angular frequencies” in isotropic
and uniformly oriented anisotropic pores. Any Gaussian moment
can only contribute to zero- or two-cycle modulations, whereas
kurtosis will also produce a distinct four-cycle modulation. Gen-
erally, this procedure will identify a combination of compartment
shape anisotropy (CSA) and compartmental kurtosis. We will
describe the theory and experimental verification of the method
in a well-characterized restricted diffusion phantom and a plant
specimen. We also include additional detailed proofs and simula-
tions as part of the supplementary information (SI).

THEORY

The conventional PFG experiment uses a pair of field gradient pulses
of equal duration (δ) and strength (but effectively in opposite direc-
tions, +g and �g) separated by a time Δ. A spin with a displace-
ment of R will acquire a phase ψ =q �R in the limit of small pulse
widths δ, where q≡γδg (γ is the gyromagnetic ratio) (17). The d-
PFG experiment (18,13,14) adds a second and independently varied
PFG pair, q2, some time τm after the first PFG pair, q1. The phase
encoded by the d-PFG experiment is then1 ψ =q1 �R1+q2 �R2,
where R1 and R2 are the net displacements occurring during q1
and q2, respectively. The NMR signal without relaxation is then

E q1;q2ð Þ ¼ e�iq1�R1�iq2 �R2
� �

[1]

where hi denotes the ensemble average. In thiswork,weonly consider
τm=0 and use identical diffusion timesΔ during q1 and q2 (Fig. 1).
In the absence of flow, the second order cumulant expansion of E

(q1,q2) depends only on the mean square of the phase, 1
2 ψ2h i (20).

This is a function of the mean square net displacements
hR1R1Ti= hR2R2Ti and their correlations hR1R2Ti= hR2R1Ti, where the
equalities follow from diffusion being a stationary process and the
use of identical encoding times Δ (21). The mean square

displacement defines the diffusion tensor as a function of the diffu-
sion time, DΔ ¼ hRRT i=2Δ. The correlation tensor hR1R2Ti is also a
function of the diffusion tensor, but for two different diffusion times,
2Δ D2Δ � DΔ

� �
, as shown in (19) for τm=0. With these relations, the

second order moment approximation of the d-PFG signal is then

ln E q1;q2ð Þ½ �≈
�Δ q1

TDΔq1 þ q2
TDΔq2 þ 2q1

T D2Δ � DΔ
� �

q2

� �
[2]

Using the basis with symmetric and anti-symmetric gradient
waveforms as shown in (Fig. 1b), qs≡(q1+q2), and qd≡(q2�q1),
Equation [2] yields

ln E qs;qdð Þ½ �≈�Δ
2

qs
TD2Δqs þ qd

T 2DΔ � D2Δ
� �

qd

� �
[3]

Thus, qd and qs independently encode for the apparent diffusion
coefficient for two different diffusion times (D2Δ and 2DΔ � D2Δ )
and are the principal signal axes of the d-PFG experiment when
Δ1 =Δ2 (16). These independent encoding modes reflect a more
general symmetry than Equation [3] would imply. The qs,qd
decomposition also holds for all mixing times τm (16), and repre-
sents the axes of mirror symmetry of the d-PFG signal as proved
and simulated in the supplementary information (see SI).

By decomposing the signal equation according to these inde-
pendent encoding modes, the task of designing a d-PFG experi-
ment that isolates or intentionally correlates different terms is
greatly simplified. For example, correlating the values of the ap-
parent diffusion coefficient at different diffusion times is a matter
of systematically varying the relative strengths of qs and qd (16).

Alternatively, the technique this paper introduces utilizes the
qs,qd formulation to develop a sequence that removes terms
in order to highlight higher order effects. Specifically, by
performing the experiment holding |qs| = |qd| = q constant, it
symmetrically and consistently weights the underlying encoding
modes. We further focus on one specific implementation,

q1 ϕð Þ ¼ q cos ϕð Þx̂; q2 ϕð Þ ¼ q sin ϕð Þŷ [4]

where the angle ϕ acts as a modulation phase between the mag-
nitudes of q1 and q2 (Fig. 2 left). Note that the orientations of the
PFG pulses do not vary. However, ϕ does represent the physical
orientation of the principal encoding modes relative to ± x̂,

qs ϕð Þ ¼ q cos ϕð Þx̂ þ q sin ϕð Þŷ;

qd ϕð Þ ¼ �q cos ϕð Þx̂ þ q sin ϕð Þŷ

[5]1This notation employs a different sign convention for q2 than (19), and cor-
responds to the first pulse of both q1 and q2 having positive effective gradi-
ent amplitudes.

Figure 1. (a) The basic d-PFG pulse sequence with zero mixing time. An
initial 90° RF pulse excites the spins, then three gradient pulses acting as
two PFG encoding pairs imprint and refocus the spatial modulation of
the spin magnetization across the sample, after which the signal is ac-
quired. (b) The alternate encoding axes qs and qd are linear combinations
of q1 and q2 that divide the total encoding period into segments of 2Δ
and Δ respectively, and are the principal signal axes.
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We call this specific sequence symmetrized double PFG (sd-
PFG) because it symmetrically weights both the underlying
encoding modes, and uniformly samples all orientations within
the x–y-plane for both encoding modes. As a consequence, sd-
PFG modulations due to the variation in DΔ with Δ for isotropic
diffusion are eliminated, where Equation [3] evaluates to

ln E q;ϕð Þ½ �≈�Δq2DΔ [6]

and for anisotropic samples sd-PFG is equally sensitive to diffu-
sion along both directions in the encoding plane, where

ln E q;ϕð Þ½ �≈� Δ
2
q2 DΔ;xx þ DΔ;yy

� ��
þ cos 2ϕð Þ DΔ;xx � DΔ;yy

� �
þ 2 sin 2ϕð Þ D2Δ;xy � DΔ;xy

� �	 [7]

In contrast, traditional angular d-PFG based techniques (13) lack
these symmetries (Fig. 2 left). In these experiments, the direction
of motion between successive diffusion periods (instead of inde-
pendent modes) is measured by fixing the magnitudes of the q1
and q2 encoding strengths and varying their relative orientation θ.

q1 θð Þ ¼ qx̂; q2 θð Þ ¼ q cos θð Þx̂ þ sin θð Þŷð Þ [8]

qs ¼ q 1þ cos θð Þð Þx̂ þ sin θð Þŷð Þ;

qd ¼ q �1þ cos θð Þð Þx̂ þ sin θð Þŷð Þ

[9]

As a result, time dependent diffusion will generally cause a
cos θ modulation for isotropic diffusion (13,21),

ln E q;ϕð Þ½ �≈�2Δq2 DΔ þ cos θð Þ D2Δ � DΔð Þf g [10]

and will produce a stronger encoding along the direction of the
first gradient pulse.

ln E q;ϕð Þ½ �≈� 1
2
Δq2 3DΔ;xx þ DΔ;yy

�
þ 4 cos θð Þ D2Δ;xx � DΔ;xx

� �þ 4 sin θð Þ D2Δ;xy � DΔ;xy
� �

þcos 2θð Þ DΔ;xx � DΔ;yy
� �þ 2 sin 2θð ÞDΔ;xy

	
[11]

sd-PFG also removes the angular d-PFG modulation present
when non-negligible pulse widths are employed and the q1

and q2 gradient pulses overlap (see SI). Then, the angular d-
PFG signal oscillates even for isotropic time independent diffu-
sion due to the encoding strength (b-value) varying (22),

ln E g; θð Þ½ �≈�1
3
g2δ2 6Δ� 2δ� δ cos θð Þð ÞD [12]

whereas the sd-PFG signal remains constant (see SI)

ln E g;ϕð Þ½ �≈�1
3
g2δ2 3Δ� δð ÞD [13]

High order cumulants will cause interference-like effects, lead-
ing to additional modulations with ϕ in the sd-PFG signal. The
fourth cumulant, kurtosis, is the next higher moment in the
cumulant expansion of the signal and will contribute to a four-
cycle modulation in the sd-PFG signal as the terms sin(4ϕ) and
cos(4ϕ). Using the tensor notation in Reference (21) and assum-
ing the narrow gradient pulse limit, the sd-PFG signal to the
fourth moment is

ln E q;ϕð Þ½ �≈� Δq2

2
ð DΔ;xx þ DΔ;yy
� �þ cos 2ϕð Þ DΔ;xx � DΔ;yy

� �
þ2sin 2ϕð Þ D2Δ;xy � DΔ;xy

� �Þ
�q4

4!

(
3þ cos 4ϕð Þ

8
Kxxxx þ Kyyyy
� �

þcos 2ϕð Þ
2

Kxxxx � Kyyyy
� �þ 3

4
1� cos 4ϕð Þð ÞZxxyy

þ sin 2ϕð Þ � 1
2
sin 4ϕð Þ


 �
Sxxxy � Syyyx
� �) [14]

where K reflects the mean of the fourth power of net displace-
ment over Δ, and the other tensors correlate R1 and R2 between
the times defined by q1 and q2. As defined in Reference (21),
these are

Kijkl ¼ R1iR1jR1kR1l
� �� R1iR1jihR1kR1l

� �
� R1iR1kihR1jR1l
� �� R1iR1lihR1jR1k

� �
Zijkl ¼ R1iR1jR2kR2l

� �� R1iR1jR2kR2l
� �

� R1iR2kihR1jR2l
� �� R1iR2lihR1jR2k

� �
Sijkl ¼ R1iR1jR1kR2l

� �� R1iR1jR1kR2l
� �

� R1iR1kihR1jR2l
� �� R1iR2lihR1jR1k

� �

Because kurtosis will typically induce a four-cycle modulation
in the signal with respect to ϕ and Gaussian terms can only
cause zero- and two-cycle modulations, sd-PFG can unambigu-
ously identify a combination of kurtosis and higher order mo-
ments of the signal decay via a Fourier decomposition of ln
[E(q,ϕ)] with respect to ϕ. These oscillations are a consequence
of the signal equation for a tensor term of order 2n involving a
product of 2n terms of sin(ϕ) and cos(ϕ) with sd-PFG sampling,
yielding oscillations at up to 2n cycles.
In comparison, correlating the direction of motion between

subsequent times with angular d-PFG (13) exhibits a very
different signal structure. Despite the angular d-PFG terms also
consisting of trigonometric polynomials of order 2n, due to the
symmetry of the tensors and the |q1| = |q2| sampling, no such
four-cycle oscillations are produced for kurtosis with isotropic
diffusion (15,21). Thus, sd-PFG has both the advantages of remov-
ing the additional modulation due to the time dependence of the

Figure 2. Gradient trajectories for angular d-PFG (left) and sd-PFG (right) in
qs, qd and q1, q2 coordinates. Angular d-PFG (13) fixes themagnitudes of q1
and q2 and varies the orientation of q2. In qs,qd coordinates, this varies the
relativemagnitudes of qs and qd and somodulates themeasurement’s sen-
sitivity to DΔ and D2Δ . sd-PFG modulates the relative amplitudes of q1 and
q2, but never orientation, in a manner so as to fix the corresponding magni-
tudes of qs and qd for a constant relative sensitivity to DΔ and D2Δ.
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diffusion coefficient and the ability to identify kurtosis by this
Fourier analysis, including the common case of isotropic diffu-
sion, which angular d-PFG techniques cannot do. This analysis
also indicates that traditional angular d-PFG indicators of CSA
can be contaminated by kurtosis. Kurtosis in angular d-PFG will
still produce two-cycle modulations for isotropic pores (21), but
for anisotropic pores it will also produce two- and four-cycle
modulations that can be mistaken for CSA.
Typically, natural samples contain a distribution of restriction

shapes and sizes, whereas the analysis so far has assumed a ho-
mogeneous sample with a single pore type. Given isotropic
pores, the Fourier identification of local kurtosis is robust. In this
case, the sd-PFG signal arising directly from the Gaussian mo-
ments of a heterogeneous distribution of pore sizes is simply

E q;ϕð Þ ¼ ∫dDΔf DΔð Þe�Δq2DΔ [15]

where f(DΔ) is the corresponding distribution of isotropic diffu-
sion coefficients. A distribution f(DΔ) will cause a non-Gaussian
decay of E(q,ϕ) as a function of q, but will maintain invariance
with respect to ϕ. Thus, given isotropic pores, the observation
of a four-cycle modulation with sd-PFG can distinguish compart-
mental kurtosis (CK) from the presence of a distribution of appar-
ent diffusion coefficients. In contrast, s-PFG measurements and
current d-PFG analyses cannot make this distinction. Further-
more, these oscillating components of the sd-PFG signal can
be isolated by Fourier analysis robustly, and could unambigu-
ously identify far weaker non-Gaussian components than the tra-
ditional means of extracting kurtosis, such as fitting the second
and fourth order terms from the signal q-decay.
There is an additional source to the 4ϕ modulation in the case

of compartment shape anisotropy (CSA), where the individual
pores are anisotropic but together have no net preferential orien-
tation (see SI). Then, the two-cycle modulations in the sd-PFG
signal due to local Gaussian anisotropy can combine to form a
four-cycle modulation as a fourth order decay of the observed
signal. A “frequency doubling” of the oscillating terms cos(2ϕ)
and sin(2ϕ) occurs because the observed signal is the sum of
the exponent, a non-linear operation, of these terms for multiple
orientations. Thus, in general the observation of a four-cycle sd-
PFGmodulation in a heterogeneous sample reflects the presence
of a combination of CSA and kurtosis as a fourth order decay.

METHODS

We acquired sd-PFG data for a glass capillary array and a plant
sample on separate instruments. To minimize artifacts, the sd-
PFG sequence in figure 1a-b must be modified to include
refocusing pulses, and could further utilize bipolar gradient
pulses (23). For both sets of measurements, we incorporate a
double spin echo during sd-PFG encoding, and use an appropri-
ate acquisition scheme.
For the glass capillary array phantom (GCA) (PHOTONIS,

Sturbridge, MA, USA), MR acquisition was carried out on a 7 T
Bruker AVANCE III spectrometer with microimaging gradients
(Bruker BioSpin, Billerica, MA USA) using a double-PFG filtered im-
aging sequence (24). The nominal pore diameter was 10μmwith
a maximum variation of 5% between capillaries. The sample tem-
perature was set to 19 C. The sd-PFG parameters were δ= 3.15ms,
Δ=25 ms, and q/2π = 41.9 and 83.9mm-1, respectively. The sam-
ple was placed parallel to the main magnetic field, which defines

the z-axis. The first and second gradients were fixed along the x-
and y-axes, respectively. For each of the q-values, a set of 37 mea-
surements was made with ϕ values increased in increments of
10∘. The imaging parameters were TE = 12ms, TR = 7 s, slice
thickness = 0.5mm, field of view= 16× 16 mm2, matrix
size=128×128, resolution=0.125×0.125 mm2, bandwidth=50 kHz
and number of averages = 2. The signal was averaged over a
large region of interest of the sd-PFG images to improve the
signal-to-noise ratio. To fit the observed sd-PFG signal to the
simulation as in (24), a bi-compartmental model was assumed
and a Levenberg–Marquardt numerical fitting procedure was
employed to estimate the unknown parameters: S0 (signal with
no diffusion weighting), fcyl (fraction of the restricted compart-
ment) and the inner diameter (ID). To obtain the sd-PFG signal
model, we employed (SI) a general theory of NMR signal for
restricted diffusion (25), which involves the generalization of
the multiple correlation function method originally developed
by Robertson (26) and extended by others (27,28).

For the asparagus sample, the center was cored with a 3mm
NMR tube and kept at room temperature, ≈ 28± 1 °C. Data was
collected on an Oxford 1 T horizontal bore magnet with a Bruker
AVANCE II spectrometer and a custom double-PFG filtered CPMG
sequence. The encoding parameters were δ= 4.0 ms, Δ= 120 ms,
q/2π spanned 0–38.2mm-1 and ϕ spanned 180° in 11.25°

increments, omitting the angles where either q1 or q2 is exactly
zero and fails to also act as a crusher pulse. A 16 × 14 array of
q-values and ϕ were acquired with a CPMG acquisition
employing TE = 0.5ms, TR = 6 s and eight averages. The q-values
were incremented as an inner loop and the signal is normalized
to the most recent q=0 acquisition to minimize the effects of
temperature and other instrumental drifts.

RESULTS AND DISCUSSION

Glass capillary array

The distinct features of sd-PFG are the absence of modulations
due to time dependence in the apparent diffusion coefficient,
and a corresponding four-cycle modulation that remains even
for isotropic diffusion. In contrast, when correlating the direction
of motion between diffusion periods, these conditions will yield
a cosine modulation due to time dependent diffusion and no
modulation for isotropic kurtosis.

The GCA phantom consists of aligned cylindrical pores using
capillaries (10 μm ID) filled with water. For purely Gaussian diffu-
sion, sd-PFG should give a constant signal as a function of ϕ.
However, the signal will also produce an oscillation at four cycles
(4ϕ) in the presence of compartmental kurtosis. This oscillation
cannot arise from CSA because the cylindrical pores are isotropic
within the x–y-plane. These modulations are clearly observed at
high q (Fig. 3) and still observable even at lower q. This oscillation
is notably absent from previous GCA measurements with angular
d-PFG (24), in agreement with Jespersen’s prior predictions (21),
which confirms that angular d-PFG cannot isolate CK as an oscil-
lation for this simple pore geometry. The one-cycle oscillation
characteristic of restricted diffusion in angular d-PFG (cos (θ)) is
notably absent from this data, in agreement with our strategy
of symmetrization of the sd-PFG sampling and our qs,qd
decomposition.

The observed the sd-PFG experiment signal quantitatively fits
the full numerical simulation of the cylinder model. Assuming a
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cylindrical geometry and a variable fraction of free fluid, the fit to
the data yields a diameter of 9.67 μm for the 10 μm cylinders.
Deviations from the fit are dominated by the inability to main-
tain constant q as a function of ϕ due to the limited digital res-
olution of the gradient electronics. The experimental gradient
amplitude exhibits a noticeable variation (q/2π =41.930±0.124 mm-1

and 83.943 ± 0.066 mm-1).

Compartmental kurtosis in a plant sample

The utility of the sd-PFG experiment is not when there is a homo-
geneous system and the observation of the bulk properties
matches “local” diffusive behavior, but when there is a mixture of
different environments obscuring local structure, as for restricted
diffusion in samples of interest for biological and material applica-
tions. A visual analysis of the sd-PFG data, as used for the GCA, is
not generally practical, because any anisotropic regions can contri-
bute to large zero- and two-cyclemodulations and visually obscure
any small four-cycle signals. In this case, a harmonic decomposition
by a Fourier transform of ln[E(q,ϕ)] with respect to ϕ will be effec-
tive to separate Gaussian and non-Gaussian behaviors. Then the
signals corresponding to the 0- and 2ϕ modulation should largely
reflect the Gaussian moments, while the signal at the 4ϕ modula-
tion can contain contributions from only higher order moments
(kurtosis and CSA). We denote these components as E 0̃ for zero
angular signal modulation, E 2̃ for the 2ϕ modulation, E 4̃ for the
4ϕ modulation etc, and focus on only the components corre-
sponding to the cosine transform,

ln E q;ϕð Þ½ � ¼ E 0̃ qð Þ þ E 2̃ qð Þcos 2ϕð Þ þ E 4̃ qð Þcos 4ϕð Þ þ… [16]

More generally, the oscillations of the sd-PFG signal can have
non-trivial sine components (Equations [7] and [14]). Their contri-
butions are not shown for clarity, as their amplitudes are compar-
atively negligible for the sample. Only E 2̃ qð Þ has a significant sine
component corresponding to time dependence in the cross-term
of the apparent diffusion coefficient (see SI).

For the asparagus sample (Fig. 4), the constant and 2ϕ contri-
butions dominate the signal, especially at small q (left panel),
and the 4ϕ modulation is not immediately identifiable from
the raw E(q,ϕ) signal. However, in the frequency decomposition
this 4ϕ modulation is clearly observable. As components with a
nϕ modulation largely correspond to a nth or the first non-zero
higher moment, E 4̃ corresponds to kurtosis and its plot forms a
linear curve with respect to q4. Similarly, E 0̃ and E 2̃ correspond
to Gaussian decays and form straight lines when plotted against
q2. The positive slopes of E 2̃ qð Þ and E 4̃(q) do not contradict hav-
ing a signal decay, and instead reflect the phase of the oscillation
resulting from the structure of the corresponding diffusion
tensors. For example, the positive slope of E 2̃ qð Þ simply implies
that DΔ,xx<DΔ,yy.
In a strict sense, the moments 2n and higher will all contribute

to a coefficient E2ñ according to the moment analysis of the sd-
PFG (Equations [7] and [14]). Thus, E 0̃ and E 2̃ will also have con-
tributions from kurtosis and higher order moments, but these
moments are typically much smaller and dominated by the

Figure 3. The sd-PFG signal of a glass capillary array (GCA) consisting of
10μm ID cylinders oriented perpendicular to the gradient axes (gx, gy) for
low (41.9mm-1) and higher (83.9mm-1) q. The four-cycle angular oscilla-
tion unambiguously indicates the presence of non-Gaussian diffusion.
The d-PFG signal modeling is confirmed by its fit to the observed signal,
where the deviations are dominated by variations in q due to gradient
resolution limitations. The fitting results, assuming a cylindrical geometry
and a free fluid component, yield a cylinder diameter very close to the
nominal 10μm ID of the sample’s fibers.

Figure 4. sd-PFG signal of asparagus and the Fourier analysis. (A) The
raw signal as a function of ϕ for different gradient pulse strengths uni-
formly spanning q = 0 to 38.2 mm-1. (B) The angular frequency decom-
position of the signal. (i) The signal modulation as a function of angular
frequency for two q-values (stars and triangles correspond to the same
values of q in A). Components corresponding to a nϕ oscillation in ln[E
(q,ϕ)] largely correspond to a nth moment decay (or to the first non-zero
higher order moment), and so (ii)E 0̃ and (iii)E 2̃, the 0 and 2ϕ oscillations,
correspond to the Gaussian decay and form a linear curve with q2. (iv)
The plot for 4ϕ (E 4̃ ) of ln[E(q,ϕ)] corresponds to kurtosis and forms a
linear curve as a function of |q|4.
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lowest order term. What this relation ensures is the ability to iso-
late the signal from typically much larger lower order moments,
and so E 4̃ isolates the far smaller component due to kurtosis
from the Gaussian contributions. This still holds true for the case
of CSA, where the superposition of signal from anisotropic
Gaussian diffusion can lead to a 4ϕ modulation, as this nonethe-
less only occurs for the fourth moment of the total signal (see SI).
The structure of this sample allows us to rule out CSA as a con-
tributing factor. In general, other techniques would have to be
employed to differentiate CK and CSA, such as the magic-angle
spinning q-vector technique of Eriksson et al. (12). Traditional an-
gular d-PFG CSA indicators cannot be used to make this distinc-
tion, since these would also be affected by kurtosis.

Generalization: correlation of independent diffusion modes

The use of principal diffusion encoding modes, as demonstrated
in the design of sd-PFG with qs and qd, enables the systematic
analysis and construction of the correlations between different
measures of diffusion. In contrast to Mitra’s initial work (13),
where the relative direction of motion is compared between ad-
jacent times (q1 and q2), the influence of basic features such as
time dependent diffusion are immediately apparent and easily
controlled in our framework. This greatly simplifies the design
of d-PFG experiments to isolate terms as shown here, or to di-
rectly correlate them as done previously (16).
The use of these modes can enable the generation of a new

class of diffusion techniques. In particular, sd-PFG is but one
modulation technique possible when fixing the encoding
strength for the separate diffusion modes. Instead, alternative
modulation schemes could sample all the distinct angles be-
tween qs and qd in the plane, or use different fixed strengths
for the two different modes. For example, in a manner analo-
gous to Jespersen’s recent approach to angular d-PFG measure-
ments (29), the sd-PFG experiment could be repeated, varying
the orientation of the encoding x–y-plane between measure-
ments to obtain rotationally invariant measures of the signal.
Finally, the distinct diffusion encoding modes qs,qd are unlikely
to be the only unique pair, and there are possibly many more
independent modes. For example, a whole range of gradient
sequences that are independent to the second moment have
been incidentally identified to eliminate background gradient
cross-terms (17). Whether signal from these other sequences
exhibits the same mirror symmetry in the signal as qs,qd is
the focus of current work.

CONCLUSIONS

This paper describes a novel d-PFG design (sd-PFG) to directly
measure compartmental non-Gaussian diffusion (e.g. kurtosis)
through a unique four-cycle modulation. The presence of a diffu-
sion distribution and bulk anisotropy in natural materials does
not affect this measurement, as they appear as zero- or two-cycle
modulations, easily distinguishable from the four-cycle modula-
tion through Fourier analysis. The pulse sequence described here
can be readily implemented in conventional NMR systems and
on clinical MRI scanners, and the sequence parameters such as
gradient strength q (up to 40mm-1) and encoding times Δ (10–
100ms) are well within the range of the capability of these
systems. Thus, we expect this technique to find applications in
medical research and clinical diagnostics to examine tissue

pathology resulting from changes in tissue microstructure. More
broadly, this work identifies basic symmetries underlying multi-
ple point diffusion measurements, and sd-PFG represents one
of a new class of multi-dimensional NMR techniques based on
correlating the distinct modes of diffusive motion.
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